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The cumulative distribution of the number of secondary electrons in a
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single~stage photomultiplier is calculated by numerically integrating the in-
version integral for its probability éeneréting function alopg a suitably
chosen contour. A residue series applicable in certain cases is also pre-
| sented, Saddlepoint épproximations to the contour integral are described,
which are the more accurate, the greater the numbers of secondaries. Recur-
rent relations are developed for computing values of the distribution for
purposes of comparison. Computation of the Neyman Type-A.distribution is

treated as a limiting case.

4\

Research sponsored by the Air Force Office of Scientific Research, Air Force
Systems Command, USAF under Grant AFOSR-82-0343. The United States Government
is authorized to reproduce and distribute reprints for Govermmental purposes

notﬁithstanding any copyright notation thereon.

AMS classification 65U05, 60E10

37 MS pages, 7 figs, 7 tables

g7iC FILE COPY
[ DISTRIBUTION STATEMENT A 838 08 08 19 6

Approved ioz public release)
Distribution Unlimited




) Ty

78
S Y

RS

gty ERURE

N

L Y

<

el ol aed a2 aaral el A il el R LIS NSRS VAR E

d prrerengegey
Cal A S A

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (Whan Dala Entered)

2 S BB B ol e e 2 T T e ) i Sin N ._‘-‘_‘f‘.(:_';'-‘ IR Y

A S

- . P

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM®

V.. REPORT NUMRER 2. GOVT

R-TR- 83-0677

AD-R I3 HEO

ACCESSION NOJ ). RECIPIENT'S CATALOG NUMSBER

4. TITLE (end Subtitie)
COMPUTATION OF COUNTING DISTRIBUTIONS

FROM A SINGLE-STACE MULTIPLICATIVE PROCESS

3. TYPE OF REPORT 8 PERIOD COVERED

€. PERFORMING OG. REPORT NUMBER

7. AUTHOR(S)
Carl W. Helstrom and Stephen O. Rice

®. CONTRACT OR GRANT NUMBER(s)

AFOSR-82-0343 °

3. PERFORMING ORGANIZATION NAME AND ADDRESS
Department of Elec. Engr. & Comp. Sci.

University of California, San Diego
La Jolla, CA 92093

10. PROGRAM FLEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

PE61102F; 2304/A5

15, CONTROLLING OFFICE NAME AND ADDRESS

AFOSR/NM May 2, 1983
Bldg. 410 13. NUMBER OF ngss
Bolling AFB DC 20332

12. REPORT DATE

4. MONITORING AGENCY NAME & ADDRESS(I! dillerent from Controfling Office)

1S. SECURITY CLASS. (of this report)

Unclassified

158, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

5. DISTRIBUTION STATEMENT (of this Report)
b

+ Approved for
. distribution

Public releases
unlimited.,

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 1] different from Report)

“Aéo;u;l;;n ro‘r

18. SUPPLEMENTARY NOTES

) NTIS GRARI
LI DTIC TAB =)
Uimnounced L4

Justiricstion _ . —

ce™?
|N9'!c1!'
- 2

By. .
19. KEY WORDS {Continue on reverse side if necessary and identily by block number) _Distributi-n/
' Avaiiobilit s oty
probability distributions, photomultipliers, particle counting,——li'hm;;tmnor-n.
numerical integration Dist | Spucicd

Al |

The cumulative distribution of the

chosen contour.

20. ABSTRACT (Continue on revcrse side If necesseory ond identify by block number)

single-stage photomultiplier is calculated by numerically integrating the in-
version integral for its probability generating function along a suitably

A residue series applicable in certain cases is also presented.
Saddlepoint approximations to the contour integral are described, which are

the more accurate, the greater the numbers of secondaries.
are developed for computing values of the distribution for purposes of compar-
ison. Computation of the Neyman Type-A distribution is trecated as a limiting cafe.

number of secondary electrons in a

Recurrent relations

EDITION OF 1 NOV £5 IS ODSOLETE

DD ,53n'ss 1473

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

} BRI S

*i
“e
Y

~
.1




14 [

I. Particle Multiplication

. (a) Introduction
The particle-counting distributions with whose computation this paper is
concerned are exemplified by that of the output of a photomultiplier with a
single stage of multiplication. In this device primary photoelectrons, driven
out by 1ncidenf light, are accelerated in an electric field and impinge on a
surface from which they eject secondary electrons. Let xj be the number of

secondary electrons ejected by the j-th primary electron. Then if k primary

s electrons strike the surface during a fixed interval (0, T), the total number
i;-' of secondary electrons is |
™ k - ‘
! . n= E xj (1.1)
e : i=1 '
™ .
2 The number k of primary electrons is a random variable with probability gen-
": .
. erating function (p.g.f.)
[- -]
k
f(z) = E sz ’ (1.2)
k=0

where llk is the probability that k primary photoelectrons strike the surface,
Let the numbers ’3 of secondary electrons be independent and identically dis-
(s)

tributed random variables with probabilities Pr (xj =) = Py

g(z) = Z pf)z"‘. . (1.3)
m=0 ’

Then .the p.g.f. of the total number n of secondary electrons counted during

and p.g.f.

- (0, T) 1s

h(z) -2 pnzn = £(g(z)), ) (1.4)

n=0

- AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
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E;- where Py is the probability that the total number of secondaries equals n [1]. [
e - Although the probability distribution {pn} may be of interest in comparing ﬂ
- theory with experiment, the cumulative probabilities
vy - n-1
:Er Qn- = E Pm. n= 1, 2. eose
. mn=0
.:3 -
=i =0, 1.5)
" Qo » (
e,
N and their complements
3 a .
5 + - 2
',;: m=n
p A
are generally more useful because they characterize the performance of devices
- in which some action is triggered when the number n of particles exceeds a cer-
) tain bias level. False-alarm and detection probabilities in optical- and
i . particle-detection systems and error probabilities in optical communications
:‘ are directly related to the cumulative distribution, and it is the computation
~ _
:7: of this distribution that will be studied here. We call Q; and Q: the "tail
i probabilities." Their generating functions are
. :
- o
- - - - n _ zh(z)
& H (2) Z Q z = ¢ %))
> n=0
s o . '
-, + - +.n _ 1-zh(z)
* B(2) an £ l1-2 (1.8)
- n=0
in terms of the p.g.f. h(z). ‘
. Multiplicative processes such as this occur in many other contexts as well. 1
-, A reviev has recently been given by Teich [2], who mentions applications to 4
' biology, medicine, cosmology, geophysics, and operations research. The prob- !
'; abilities Py and the tail probabilities Qn- and Q: must usually be determined :
R |
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by numerical methods, but the éonventional ones run into difficulties when the
numbers n and their expected value E(n) are large. The numyer of steps needed

to compute P, generally increases with increasing n, as does the number of terms
to be summed i{n evaluating Q;\ Inaccuracy in the individual values of P, intro-
duces large relative errors into the complementary cumulative probabilities

Q: - 1-Q; when n much’ exceeds E(n).

In this paper we shall present methods for computing the tail probabilities
that become the more efficient, the greater the numbers n and E(n), and do not
require computing the individual probabil;ties P, and ‘summing them. The appli-
cation to the output of a multiplicative process may be regarded as exempli-

fying methods that are worthy of consideration whenever the p.g.f h(z) of some

integer-valued random variable n is known in analytical form and the expected

. value E(n) and the numbers n for which Q;' or Q;r is wanted are large.

The principal method involves suitably deforming the contour of integration

in the inversion integrals

- "Th(z) 4
Q, '/_ zl—zz 21rzi (1.9)
C
o+ z'nh(z) dz
Q, ~-j+ o (1.10)
C

where C and c+ initially are closed contours enélosing the origin, but no
singularities of the m.g.f. hkz); C+ encloses the point z = 1, C does not;

and the contours are traversed counterclockwise. The integration along the de-
for;;d contour is evaluated by the trapezoidal rule. The use of numerical con-
tour integration to evaluate cumulative distributions of continuous random vari-

ables was treated in [3], and a comment on that paper described its application

to cumulative distributions of integer-valued random variables [4].

-




Besides evaluating the tail probabilities Q;' and Q;rby numerical contour

integration, we shall.show how to approximate them by isolating the contribu-

Wy  FRERSMICR T Rl R et i _-....a

tions to the integrals in (1.9) and (1.10) at the saddlepoints of the integrand.
Daniels [5] first demonstrated saddlepoint approximations to probability dis-

tributions (pn} of integer-valued random variables. Related to this method is

L W MERR AR

the use of tilted distributions, utilized by Blackwell and Hodges [6], Bahadur

&

and Rao [7], Petrov [8], and Barndorff-Nielsen and Cox [9] to calculate cumu-

sRANEY

Y

lative distributions of sums of independent random variables; see also Van Trees

LN

{(10]. A different éaddle-point approximation, which avoilds the use of the
error-function integral, was utilized for tail probabilities of integer-valued
random variables in [11]. In the present problem the contributions of saddle-
points above and below the real axis in the z-plane must be included in addi-

| tion to that of the pfincipal one lying on the real axis. We shall evaluate
the latter by means of a uniform asymptotic expansion [12]; the contributions-
of the off-axis saddlepoints are evaluated by the method of [11].

The contour-integral method and its approximations apply whenever the p.g.f.
h(z) of the output distribution is known in analytical form, but for the sake
of definiteness we shall restrict our discussion to distributions arising when
the light ejecting the primary electrons is incoherent light with vari&us simple

spectral densities, and the number of secondary electrons ejected by each pri-

mary electron is governed by a Poisson distribution. A by-product of our study =
is an illustration of how the output distribution depends on the product of the

bandwidth W of the incident light and the duration T of the counting interval.

. '
We first review methods of computing the probabilities Py that follow most :
directly from (1.4) and are useful when the numbers n and E(n) are small, in ;
order to generate accurate values of those probabilities for comparison with i

the contour-integrition and other methods to be presented later.




(b) General Multiplicative Processes

From the p.g.f. h(z) the probabilities p, can be determined by

d"h(z) 1 Q"
P = — = = — f(g(2)) ’ n >0, (1.11)
n ol dzn z2=0 n! dzn z2=0

By means of a formula based on Bell polynomials [10, p.1998], the probability

P, can be written as

. .
P2
o L A (1.12)
where
k
£, =45 () : g0 = p$, (1.13)
dz z=g(0)

and the Hn k are determined by the recurrent relation
’

- o(8)
H#1,1 = Ppi1e

n
m, (s)
B,k = 0, (0~ wed) Potlm P, k? (1.14)
_ Z;m_ |

in terms of the distribution of the number of secondaries per primary photo-

electron. In particular

N Ol (1. 15)
n,n Py *. *

(c) Poisson-Distributed Secondaries

When, as we assume henceforth, the distribution of the number of secondaries

per primary electron has the Poisson form with mean G, which is called the gain,

p“(") « ¢® e S/nt, K (1.16)

the probabilities P, that the total number of secondaries equals n form what
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is called a compound or generalized Poisson distribution [13] and are given by

Py = D T (k6 e /n, (1.17)
k=0

The p.g.f. of the output distribution is now
h(z) = £(eSF D), (1.18)
It follows from Problem 26, p. 47 of Riordan's book tl&] that

= n = -kG
Hn,k G S(n, k) e

(1.19)
in terms of the modified Stirling numbers of the second kind, S(n, k), which
obey the recurrent relation
$(1,1) =1, S(k,n) =0, k>n,
S(ntl, k) = [S(n, k-1) +k5(n, k)1/(n+l). (1.20)
In terms of the ordinary Stirling numbers of the second kind these are de-
fined by
S(n, k) = S(n, k)/n! (1.21)
and are introduced in order to avoid overflow in machine‘computation. Recur-
rent relations for S(n, k) are given in [14]. In particular
S(n, 1) = S(n, n) = 1/n!. (1.22)
As a result the probabilities sought are
Po - £(e™%),

Pa= "D £ 8m, 0™, a>o, (.23
- k=1

-

in which the derivatives fk of the p.g.f. f(z) of the primary distribution are

G

evaluated at z = ¢ °, This enables computation of the probabilities P by a

strictly finite procedure in contrast to the infinite series in (1.17),

----------
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When the number n is large, however, the great number of iterated com-

> putations required by (1.21-.23) may introduce substantial errors due to )
tz rounding off, Greater accuracy can be achieved for large n by utilizing (1.17), ’
A

- replacing n! by Stirling's approximation [15] and writing it as

S ©

W -3 -1 z kG )“ n+1-kG

- P, = [27(n+1)] “[B(n+l)] ’Hk (;H-—l e ’ (1.24)

:J

N where -

b B(z) = exp (—1—;; e 0(z'5)) (1.25)

7 ' 360z

i The summation was halted when the terms in (1.24) became insignificant.
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i II. Primaries Ejected by Incoherent Light
ks X3 . (a) Arbitrary Spectral Density
The incident light is assumed to be quasimonochromatic, linearly polarized,
7 |
- incoherent light with a spectral density $(w); the angular frequency w is mea-
b s

" sured from the central angular frequency of the light. Because the field of
.3:; the light is a Gaussian random process, the probability generating function
,~ of the distribution of primary photoelectrons is
‘~: u
- - I I - 111

"_‘:r | £(z) {1 Nplr(z '1)] ’ (2.1)
o r=1

_;': where Np is the mean number of primary electrons [16]. The lr are the eigen-
‘ values of the integral equation

.-v,. .

-“ Ap(t) -/ ¢(t ~-8)p(s) ds, : (2.2)
", . 0

]

™ whose kernel

:;.: . [ -] .
2y o) = | @ T quw/2n (2.3)
% is the temporal coherence function of the light field and the Fourier trans-
~Y .

i form of the spectral density ¢(w); (0, T) is the interval during which elec-

.‘ trons are counted. We assume that the spectral density Nw) is normalized

. so that

2 .

- b

fa i E )‘r -1 (2.4)
g S
ﬁ vhich requires that
2]
e .

T¢(0) = T { ¢(w) dw/ 7 = 1. (2.5)
4

&

Ld

A
P A
4
(%

d
N I T S
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gﬁ,‘ In terms of the Fredholm determinant

w |
{ | - D(u) = | I (142 _u) (2.6)

fff‘ r=1

et )
A associated with the integral equation (2.2), the p.g.f. is

AN .

& £(2) = (N (1-2))17 =| I [1-AN (z-1)]1 (2.7)

N P TP ‘

i =l -

‘ By introducing the residue expansion of [D(u) ]"1 we can write this p.g.f. as
ey , had dr © l1-v_

’ £(z) 'Z 1-N )‘r(z-l) =Ear (l-vrz ’

g r=1 P L r=l
' ‘ A A\t

i ' 0 =t = 1-52

& r T A 3]

. sfr

NA :

= ' =

Pr

Because (1.23) is linear in the derivatives fk’ the probabilities p, can

‘f be considered as a weighted sum of probabilities arising from the individual

" terms of (2.8),

s

e

;-;o'. pn - E arpt.n' (2-9)

=]

'4

with

Loyt

a2 a2 4 » 2

%

LA AL
)
(]

n
- n & k
- Pr,n Pr,oc E k!S(n, k)Er , n >0,
k=1

) T
= o = (2.10)

»
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-
5
5
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- Writing

'_.‘ . n

o . (x)

i . Pr,n I,r,O E Tn,k’

{ k=1

N 1.0 = 6"t S, 0EK, (2.11)
. :

and using the recurrent relation (1.20) for the modified Stirling numbers, we

find a recurrent relation for the terms of (2.11),

& (r) _ kG (r) (r) (v) _
Ttk "ol Grlne-1tTe)r Tpy = Gy (2.12)

The sum in (2.9) is stopped when the terms decrease to the point of insigni-

:.'-_-_ _ ficance.
(b) Lorentz Spectral Density
. For incident light with a Lorentz spectral density, whose normalized form
\ is
% - bw) = —2 (2.13)
. . T +u)
the p.g.f. £(2) of the primary distribution is given by [17]
- ) = B w,.m -1
e £f(z) = e [coshw+3 (m + 3 )sinh w] ©,
2 2
5B w =m +2Npm(l-z), m = UT, (2.14)
:;:
' We denote the sﬁuare bracket by M(z) and write it in terms of modified spher-
.‘i';

ical Bessel functions :ln(w) obeying the recurrent relation

2n+1

L =1 60 - 282y () (2.15)
- with

) 1,6 =S08h¥ gy . Slmhy

_ whereupon .

- M(z) = F 1,60 +u(l +30) 1, () + ‘z’—i 1,09, (2.16)

r
% 10
£
>
‘i
¢
o

o
A B

............................ . B, B
........................................ TN MIPREPULI G P W
............................. .




i .
5: Then following Bédard [18] we use
‘?t a ' Ngm y m 1 wz
—-—dzn M(z) = (- - ) [-i- :ln(w) + w(l + -i-a-) in_l(w) + T in__z(w)]
vy
B = (1) (=), (2.17)
L)
N
E: which defines M _(z), in Leibnitz's formula
n n n~r V
4 1£z)M(2)] = Z : (“) £ 9 @) =0 (2.18)
azt , r) "r 4ot
' r=0
to determine a recurrent relation for the derivatives fn of £(z),
n-1 .
n-r+l (n
fo = 2 (1) (r) ern_r(Z)/H(z),
=0
z = e-G, fo = f(z), W= [m2+2Npm(l-z)]%. (2.19)

The probability P, of counting n secondary electrons during (0, T) when
the incident light has a Lorentz spectral density is then calculated by sub-
stituting from (2.19) into (1.23). Alternatively, one can calculate the prob-
abilities IIk in (1.17) and (1.24) by Bédard's method [18), which corresponds
to taking z = 0 in (2.14-.19).

(c) Negative Binomial Primary Distribution

The primary electron distribution can often be closely approximated by

the negative binomial distribution

(M) N
Hk-wl&(l-v)uvk, V"'N_%o k=0,1,2,...,
P

(M)k'- M(u+1)...(M+k—i) - L(T.M(—;)-‘Q ’ (2.20)

in which the number M of degrees of freedom is given by

11
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T
M = 12]6(0) |2 f (t- |t |e(v) | %ar (2.21)
=T

in terms of the temporal coherence function ¢(T) of the incident light [16, 19)

For the Lorentz spectral density in (2.13)
o) = 1t T | (2.22)
and
2 = -2m
M=2n"/(2m-1+e ), m = WT; (2.23)

M*lasm+*0, M*masm—+>®, For M>>1,
. 2 2
M = T|¢(0)] fltp(r)l at, (2.24)

and M roughly equals the time-bandwidth product WT, where W is the equivalent

bandwidth

o 2 o
W= / O(w) dw/2m / [9w)]? dw/2n (2.25)

-00 -0

of the light., The p.g.f. of this negative binomial distribution is

M .
l-v
f(z) = (l-vz) (2.26)
and the derivatives of the p.g.f. f(z) in (1.23) are
k M
£, = 0D, £, (———" _G) e (____1'V_G) . (2.27)
l-ve 1-ve

Again using the recurrent relation (1.20) with (1.23) we can write the prob-

ability P, of n secondaries as

pn - po E Tﬂ,k’ Po - fo’ (2028)

12
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in wvhich the coefficients Tn k obey the recurrent relation
1

G
Totl,k = m+1 [MHE-DLET 4 +kT 1,

-G

ve
13 N T1,1"“°5' (2.29)

(d) The Neyman Type~A Distribution

When we pass to the limit M + «, keeping the mean number Np of primary elec-

trons fixed, the distribution of primary electrons turns into the Poisson dis-

tribution,

k "\
Hk = Np exp (-Np)/k!, | (2.30)

for which the p.g.f. is
£(z) = exp [Np(z-l)]; (2.31)

and the distribution of secondaries becomes by (1.18) the Neyman Type-A dis- .
tribution (2], whose p.g.f. is

h(z) = exp [Np(ec(z'” -1)] (2.32)

and for which the probabilities are most simply computed by Neyman's recurrent

relation [20]

N Ge-G k

T

B &

pk+1 k+1 Z r! pk-t' (2.33)
: r=0 ‘

or, for n >> 1, by (1.24-.25) and (2.30).

In order to illustrate the transition to the Neyman Type-A distribution
with increasing values of M, we Pave plotted the probabilities Py > 0, in
Figs. 1 and 2 for both the negative-binomial primary distribution (solid lines)
and the distribution arising from light with a Lorentz spectral density (dashed

lines), the equivalent value of m having been determined by solving (2.23).

13
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Where both distributions are not shown, their graphs fell too close to be dis-

tinguished. The curves marked '®' represent the Neyman Type-A distribution.

{- In Fig. 1, Np = 2, G = 6; in Fig. 2, Np = 6, G = 2, The long tails of the
negative-binomial distribution for small values of M carry over to the distri-
bution of the number n of secondary electrons. The negative-binomial distribu-
tion is seen, furthermore, to yield a close approximation to the distribution
[~ . arising from light with a Lorentz spectral density over the entire range

SN l1sM<® the twe coinciding at the extremes M = 1 and M = ®, except that the

latter drops off to zero slightly less rapidly than the former.

s The probabilities P, having been computed by these methods, the cumulative
& .
3 probability Qn is computed by the summation in (1.5), and its complement Q:

is determined from 1-Q‘: . VWhen the numbers n are large, however, Qn- is close

:: to 1, and round-off errors corrupting. the probabilities P, introduce large rela-
\ ) tive errors into the tail probability Q:. These methods furthermore require-

" : sterage of more and more numbers and entail more and more additions and multipli-
': cations as n and E(n) increase. We therefore turn to methods that enable computa-
.'- tion of the tail probabilities Qn-~ and Q: directly and are the more 'efficacious,
:.,‘ the larger the mean number Np of primaries and the gain G in the multiplicative
- process,

N
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III. The Method of Residues

By (1.10), (1.18), and (2.8) the right-hand tail probability Q: 1

Q: ,Z urqr,n (3.1)

r=}

where

z "h_(z)

(-]
- - T dz
n Zpr,m /+ z-1 2ni (3.2)
m=n C

with
b (2) = (1-v)/@-v S, JERY

the contour C+ enclosing the origin and the point z = 1, but none of the poles

of hr(z), which lie at the points
£ = 1467 an v 4 20m) (3.4)

for all integers k, - < k < =,
As shown in Appendix A, we can expand the contour C+ into a rectangle at

(r)

infinity, provided that we also enclose each pole ; by a small circle tra-
versed clockwise. The integral around the rectangle vanishes, and we are left
with the results of applying the residue theorem to the integrals around each

pole, whereupon

> z "h_(z)

by

qr.n - - Z Res -1 )

k= za;k .
- =G (1 -v.) z
k--u:

(r) (r)
-G (1 v) () +2ReE N . (3.5)
-1 k=1 C 1
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It is furthermore shown in Appendix A that the error RK incurred by stopping the

summgtidn in (3.5) at k = K is bounded by

T -1 c n
'RKI P (l-vr)Yn["—(z'm] . (3.6)
Ly =i @ e, (.7)

The factors Ya remain bounded and are of order n-% for n >> 1. When n is large,
only a few terms contribute significantly to t.he sum in (3.5), and convergence
is rapid.

For the Lorentz spectral dens.:lty in (2.13), to which we have applied this

method, the eigenvalues Ar are given by

A= —22—,  wea, (3.8)
c. +nm
T
where the c, are the solutions of the transcendental equation
2 2
cot c_ = (cr -m )/2mcr, r=1, 2, ...,
which can also be written
c, tan (cr/Z) =m, r odd
' c cot (crl2) = -m, T even (3.9)

The quantity <, lies between (r - 1)m and rm, and with c. = (r-l)w+er, we find

for r >> m/w,

€ = 2m/xm, (3.10)
The coefficients a_ in (2.8), (2.9), and (3.1) are given by [21]
a. = o te® sinc_ (L—L—;& t:: + cr—l)_l’,
which after some algebra can be reduced to
o, = DT (2-m /A, (3.11)

16
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~ For large values of r, by (3.11) and (3.8)

lo_| = 4me®/x%n?, (3.12)

which decreases in proportion to r-z as ¥ +, This rapid decrease does not

set in, however, until r exceeds m/m. When m >> 1, the coefficients o, for

r < m/m are large in absolute value; they always alternate in sign. When the
number n is of the order of E(n) or larger, the convergence of (3.1) is acceler-
ated by the rapid decrease of the terms fgo_nin (3.5) with increasing r, but
for n << E(n) many terms of the series must be taken when m >> 1., Because the
terms of (3.1) are of decreasing magnitude and alternate in sign, the error is
bounded by the last term included in the sum.

In Table I we compare the results of using (3.1) and (3.5) with those ob-
tained by summing the probabilities calculated by (1.23) with (2.19) in double
precision. The column headed "last increment" lists the last term added into
the sum in (3.1). We took m = 4,4365821, corresponding to M = 5 in (2.23), and

forty terms of (3.1) were summed. For these we found

40

+
Q = 2 o = 1.046101

r=1
1nstéad of 1. It is seen that the error incurred by the residue series decreases
with increasing n, and the faster, the smaller tﬁe gain G,
When the p.g.f. £(z) of the primary electrons can be approximated as in

(2.26) for integral values of M, the p.g.f.

h(z) = (____l:L!____)M (3.13)
- 1-vebiz1)
possesses a vertical row of poles of order M at the points
g, =146 aavisam), wckcw (3.14)

17




. ' Expanding the contour of integration across this row of poles and applying the
residue theorem as before yields for the complementary cumulative probability
’ [
. : M-1
" + ~1 M 2z "h
¢ % “®-D1 =y [" %) 5—’@] 3.13)
X b L 2y
i It is shown in Appendix B that this can be written as
. -n M-1
. M
+ _Qa-v) E
% c Z T 144" k (3.16)
k==
with
i )
- _1y-J E '8 _, =18 :
s=0

and the coefficients O j(M) are tabulated in Table II. The manner of calculatix_\g
these coefficients is given in Appendix B. Again the symmetry of the poles about
the real axis permits carrying the summation from k = 0 to ® and replacing t*«
terms with k > 0 by twice their real parts.

Table III compares the results of this residue series with the exact prob-
abilities for M = 5 and the same parameters as in Table I. The column labeled
"Num' lists the maximum value of k in eq. (3.16), in which the summation was
stopped when the ratio of the absolute value of the last term to that of the
sum fell below 10_6. This is of the order of magnitude of the discrepancy be-
tween the exact values, computed by (2.28 - .29), and those computed by (3.16).

As _:_ls to be expected from (3.6), the number of terms to be summed decreases with
1ncfeas:lng n. The column. of Table III headed "Single term" lists the contribution
of the pole g on the real axis alone: for n greater than F(n) it is seen to
provide an accurate approximation to the right-hand tail probability Q: .

18

............................
.....................

. s e —— a8 a8



i Sl it St S e Y 0t wud v e S T S S S LS N
£l LY N s .
AN .

Furassanrs cororanaras s caan coger e uCLEOERENEHERERESENEARERA

N . .

I$ *

Is.

-

A

L

T, IV. Numerical Contour Integration

5

- The method of residues in Sec. III cannot be applied to the Neyman Type-A
- distribution, whose p.g.f. has no poles, nor to the distribution of secondaries
A

3&: arising from primaries with a negative-binomial distribution for a nonintegral
=3

N

¢
i
-
MC
.
.
Tee
»
o

value of M, for which the singularities are branch points. For light with a
spectral density such as the Lorentz in (2.13), furthermore, (3.1) requires a
great many terms when WI >> 1 and n << E(n) in order to determine Q;' = 1-Q;r
with usefully high relative accuracy. We therefore resort to computing the tail
probabilities Q;' andvqgr by evaluating the contour integrals in (1.9) and (1.10)
numerically. |

For the sake of efficiency one would like to integrate along that contour
C on which the magnitude of the integrand decreases as rapidly as possible from
its maximum value, which occurs for z real and positive. Such a path is known
as the path of steepest descent [22]. With the integrand written in the form.

 epl¥(2)] = 22 Mn(2)/(z- 1), .1)

the imaginary part Im¥(z) of the "phase" ¥(z) i{s constant along this path. The
path of steepest descgnt furthermore passes through the saddlepoints of the in-

tegrand, which are the points at which

ay 4 n 1
d—z-'alnh(z)-;-z_l-o. (4.2)

If one plots the magnitude of the integrand exp[¥(x)] for values of z = x
on the positive real axis, one finds that it 1s.a convex function with one min-
imum at a point xé' in 0 < x < 1 and another at a point x;' inl < x <,¥o, where

0
are roots of (4.2) and the principal saddlepoints of the integrand. When the

Yo 1s the leftmost singularity of h(z) on the real axis. These points z = x3

contour of integration passes vertically through z = x&' orz = xdr, the magni-

tude of the integrand, maximum at the saddlepoint, decreases most rapidly on

19




har et Tl i -

L L
- g, e i< S A peql NGRS VRN TN P
‘

either side.

- &% & " M.

Figure 3 exhibits typical paths of steepest descent for (1.9) and (1.10)
vhen these are used to calculate the Neyman Type-A distribution, whose p.g.f.

h(z) is given in (2.32). They are drawn for Nb = G = 10. Only the curves in

4 ¥4 "4 a4 SENEEES Y T
L]

the upper half-plane are illustrated; the portions in the lower half-plane are
l : . their mirror images. The left~hand set of curves refers to Q;' for n = 75, the
right-hand set to Q:' for n = 150, Small circles indicate the saddlepoints,
The paths of steepest descent go off to infinity along asymptotes at values of
y = Im z equal to odd multiples of T/G.

Utilizing the path of steepest descent would require'computing a number of
saddlepoints z, by solving (4.2) and then tracing the branch of the path of
steepest descent passing through eaﬁh, a cumbersome procedure., We therefore
instead chose as our contour of integration a vertical straight line passing
through the saddlepoint xé' for Q;' and through xdr for Q;F. This line passes’
close to the saddlepoints of the integrand lying above and below the real axis.
(The advantages of integrating along a path passing through or near a string of

saddlepoints were pointed out by Lugannani and Rice [23].)

The saddlepoints xé' and x;' on the real axis can most expeditiously be

found by solving (4.2) by Newton's method, starting with an initial trial value
- +

. just to the left of z = 1 for X and just to the right of z = 1 for Xq 3 at
each stage one replaces the trial value x& by :5
X3+ xg =¥ (xd Mg ), (4.3)
with ¥' the first, ¥" the second derivative of the phase ¥(x); see (4.1). Along ;%
) & vertical contour through x; or'xdr the magnitude of the integrand in (1.9) or 2
(1.10) decreases most rapidly. For n < E(n) it is most expeditious to evaluate 33

Q;' in (1.9) by deforming the contour into a straight line through the left-hand

-
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saddlepoint Xg 3 for n > E(n) one evaluates Q: by (1.10) and deforms the con-

tour into a straight line through the right-hand saddlepoint xJ .

For reasons discussed in [24] the trapezoidal rule is recommended for in-

finite integrals of analytic functions. For z = x0+:ly in the neighborhood of

the saddlepoint x or x.' the integrand has approximately a Gaussian de-

= \J
0o~ %o 0
pendence on y with a width of the order of [\l’"(xo)]-%. Using the trapezoidal

Tule in the form

Q: - (A/n){éexpwxo)mez exp[‘!’(xo+ikA)]}, (4.4)
k=1 )

3

it is convenient initially to take the step-size A as [‘l’"(xo)]- and to repeat
the integration with values of A successivély halved until the value of the in-
tegral ceases changing sigﬁificantly [3, 24].

After the initial descent, the integrand in (1.9) and (1.10) may oscillate.
The magnitude of these oscillations is measured by exp [Re¥(z)], and the inteéra-
tion should continue until this magnitude is sufficiently small. The truncation

error € incurred by halting the integration at a particular value Yo of y is

bounded by

=

o : Y
| 4 L0
exp¥(xy+1y) dy/w| <7 " max Ih(x "'1)')'/ T=-1T dy
/ y 0 z

Yo Yo

< 1L max [h(xy + 1y)| / =2+ ayly
y yO
o “--(n-l)

= 7! pax Ih(xo+iy)|/ 52—-——2- dr
y X r-x,

~(n-2)

-1
£m T,

yo 2max |h(xg+ 1) |/ (n-2), .5)
y
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F.i : where ¥, - (xo +y°) .

3 For the Neyman Type-A distribution,

' . G(x,~-1
max |h(x0+iy)| = exp [N _(e Y )—1)]
y P

'5 and for that arising from a negative-binomial primary distribution, by (2.26)
: and (1.18),
wmax lh(xo+iy)| - (l-v)uil-v exp G(xo-l)]-M.
y
The final bracket is positive because the saddlepoint X, lies to the left of the
leftmost pole of h(z) as given by (3.14) with k = 0.
| Tables IV and V show results of our computation of the Neyman Type-A distri-
bution and of that arising from a negative-binomial primary distribution with
M = 5, The summations were halted when the ratio of the bound on the truncation
3 error, as given by (4.5), to the computed probability fell below 10-7. The
column headed "Exgct" was computed by summing probabilities P, calculated in .
double precision from (1.17) with (2.30) and (2.20) respectively, and because
of round-off error in our computer, which even in double precision carries only
about sixteen decimal digits, the numerical integrations had to be carried out
in double precision as well., The numerical contour integration in these examples
yielded the tail probabilities to six significant figures with fewer than two
hundred steps.

In Figs. 4 and 5 we exhibit the cumulative distribqt}pn for the parameters
used in Tables IV and V: Np =5, G = 20 and ﬁp = 20, G - 5;.;espect1ve1y, and
for”M =1, 3, 5, 10, and ®, the mean NPG = 100 remaining fiie&. The figures il-
lustrate the manner in which the ‘Neyman Type-A distribution (M = «) ig approached
with increasing M. Figs. 6 and 7 exhibit the same cumulative distributions, but

for lp = 18, G = 72 and NP = 72, G = 18, respectively, rhe éean NPG = 1296




................

remaining fixed. Comparison with Figs. 4 and 5 shows the approach of the Neyman

LS- Type-A distribution to normality as the mean NPG increases, as predicted by Teich
oy .

ii. . {2). The distributions arising from the negative-binomial primary distribution
<3 manifest no such progression toward normality.

Y .

The small circles in Figs. 4 to 7 mark the values of the cumulative distri-
bution of secondary electrons arising from incident light with a Lorentz spectral
density; these were computed by the residue series in Sec. III. For a few sets
of values the numerical integration method of this section was also carried out,
and results agreed. The tails of this distribution do not drop off to zero so
rapidly as for the approximating distribution calculated from the negative-binomial
primary distribution with the same number M of degrees of freedom, as specified

by (2.23). The latter corresponds to a spectral density that cuts off sharply

.
Loie

at a frequency deviation of the order of W = M/T from the central frequency of

[

I .
Awd A0l o

- the light; the Lorentz spectrum, on the other hand, has very long tails. Because

A . very large frequency deviations are much more prevalent in the latter, there are
more opportunities for large count deviations to be accumulated, and numbers n
much larger or much smaller than the mean E(n) are therefore more probable than
with primaries having a negative-binomial distribution.

=

S

.
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V. Saddlepoint Approximations

The principal contributions to the integrals in (1.9) and (1.10), after
the contours have been deformed into the paths of steepest descent as discussed
in Sec. IV, come from the neighborhood of each saddlepoint L these saddlepoints

are the roots of (4.2). The integrals can then be approximated by

o = @ +2re Y 12¥ e ¥ e [¥(z)1(L+C), (5.1)
k=1

where Qni(o) represents the contribution of the branch of the path of steepest
descent passing through a saddlepoint on the real axis; Z3s Zpy +e., BTE saddle~

points lying above the real axis, and Ck is a complex correction term given by

1 5. 2
Ce =504 =353 )
k=¥ ™/ @ 12, ¥ ™ @) = /e, (5.2)
In (5.1) we must take Re [W"(zk)]% > 0, Since the contributions of the complex

saddlepoints are usually much smaller than Qni(o), it is often unnecessary to
include the correction Ck. Occasionally, however, Ck may have a strong influence
if the principal term that (1:+Ck) multiplies has a phase close to *m/2, so that

without the factor (l-PCk) its real part would be small. Thé saddlepoints
zi must be determined with high precision.

One method of approximating the on-axis term Qni(o) is to use the counter-
part of (5.1-.2) [9],

£(0)

Q H? = (2ny'D (xo)]-éexp ¥(xg)
- (4) ,. (3) 2
)1 +3 w(z) - 7% - 2)%)]3 .3
¥ Pap1? 2 P )
vith x, = x6' for Q"9 and X = xoﬁ' for Qn+(0)’ where x6' and xdr are the

24
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real-axis saddlepoints defined in Sec. IV. This approximation is the more ac-
curate, the farther the value of n lies from the mean E(n) of the distribution.

For n near E(n) greater accuracy is achieved by utilizing the first two

terms of a uniform asymptotic expansion [12, 25]). It is based on the modified

phase
:l."(z) = ln h(z) -nlnz,

of which a saddlepoint ;b is the root of
o h'(z) n
' B ——— gy e ET .
¥'(z) hz) Z 0 (5.4)
This saddlepoint z = ib can also be quickly computed by Newton's method. There
< Yor where Yo is the left-

is a single such saddlepoint on the real axis, 0 < ;b

most singularity of h(z) on the real axis. At the point x = ;', ?kx) is minimum.
The contour of integration is displaced from the path of steepest descent

of the entire integrand so that it coincides with that of the function expﬁﬁz),

which lies nearby. Then the first two terms of the uniform asymptotic expansion

[25] approximate the tail probabilities as

n > E(n): Qn+(o) 3
o (= €Tfe [-2¥(xg) ]
n < E(n): Qn_( )

(5.5)

+ 5%y - 1 ¥ G2 F-WE) 1%} exp ¥G&p1,

in which primes indicate differentiation and

erfc u = (21\')-%/ exp (-t2/2) dt
x

-

is the error-function integral. 'Corrections of higher order are listed in [25].

For n = E(n) = NPG’ Xy = 1 and this approximation breaks down, but by Eq. (17)

of [25] we can write for n = E(n) = n

s e I Bt fhie

il e in

T PN Seen
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further terms are to be found in {25]. Thus for the Neyman Type-A distribution

2
Q!-‘+(O) =1 _lpmenrt (“_Gc o 12)

.

(5.7)

and for the distribution of secondaries generated by primaries with a negative-

binomial distribution

62(1 +3v+ 2\)2) - 2] ,

21 1), - |-3
=2 % 2““[6(“")*”[ [ GL+Vv) +1

v = Np/M. (5.8)

In Tables VI and VII we compare the results of the saddlepoint approxima-
tion with the exact values of the cumulative distribution; Table VI refers to
the Neyman Type-A distribution, Table VII to that arising from the negative-
binomial primary distribution. The column marked "UAE" was computed from
(5.5) or -~ for n = NpG -~ from (5.6). The "off-axis contribution" is the sum~
mation in (5.1) over the four nearest complex saddlepoints 2y, 255 Z3s and Zs
including the correction Ck’ which amounted to a few percent. This contribution
is the larger, the smaller n; for n > E(n) it is hardly significant. The smaller
the gain G, the farther the complex saddlepoints lie from the real axis, and the
less they contribute to the total probability Q;' or Q;: The column labeled

" " x(0)
crude SP" lists the value of Qn

computed from (5.3), omitting the factor in
brackets. This is the most simply calculated of approximations to these prob-

abilities and is often adequate when n lies far in the tails of the distribution
NP >> 1, G > 1. It can be useful, for instance, in initial séarch for the lgvel

n yielding a particular value of Q;' or Qér._as in setting a bias level to attain

8 pre-assigned false-alarm probability, or "size", in a hypothesis test.
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Conclusion

Three methods have been presented for calculating the cumulative distribu-

tion Q;' and the complementary distribution Q;r of the number n of secondaries

o

-3

e in a particle~multiplication process. They are appropriate when the number n and

Eﬁ its mean value E(n) = NpG are so large that the recurrent computations of Sec, I
are infeasible, When the probability generating function h(z) has poles whose

locations and residues.can be determingd, the residue series of Sec. III is the
most efficient for n 2 E(n). For n<E(n) in these cases, and in general when

8 residue expansion cannot be applied -- as for the negative-binomial primary dis-
tribution with M nonintegral, and for the Neyman Type-A distribution -~ the nu-
merical integration method of Sec. IV can be made as accurate as desired by using
sufficiently small steps. If approximations suffice, the sgddlepoint methods of
Sec. V can be utilized, but one must in general include the contributions of
saddlepoints above and below the real axis in addition to that of the principal

saddlepoint on the real axis.
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Appendix A. Convergence of Residue Series

We expand the contour C, in (3.2) into a rectangle with vertical sides at

x = 1o and with horizontal sides along the lines z = x % 1yx, where

g = 2m(K+ %) /G,

-0 & X € ™, (A.1)

(x)

In the course of its expansion the contour crosses the line of poles at Ck ,

-K £ k = K,and leaves behind it a little circle surrounding each pole.
The vertical sides of the rectangle contribute zero to the integral around
it because of the factor z-“‘in the integrand. The contributions from the little

circles are evaluated by the residue theorem as in Sec. 3, and we obtain for

3.2)

qr,n = qr(,Kn) +RK (a.2)
with

-n
i-v K C(1’)
(K) r k
Yw " D 1’ (4.3)
k==K "k .

Re = I +1_, (A.4)

where
=Hyy 2 b (2)
T dz
I, = / —3 D (A.5)

°°+iyK

K z  h_(2)
L3 dz _ 1%, (A.6)

- z-1 211 .+
-ﬂ-iyx

We want to bound the remainder term PK
Along tﬁe upper side of the rectangle, z = x+iyK, - < x < ©

e(';(z--l) eG (x-1) ,

= exp[G(x-1) +2n(K+3)1} = -
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4 1-v_ ) b
X = s - ) .
; ht(z) oo eG(x—l) 1 2 . (A.7)
_1 T
_. Hence
: o h .
. : |I l ,, [ r(x+iyK)dx
. : +
: : J o 21T(x-1+:I.yK)(x-l-iyK)n
B (1-v) / ®
N < T dx (A.8)
.o2n 2 2,n/2 .
3 . J. Ix-1+1y o +y Y
and since
-1 -1
Ix-1+iyKl ‘“yx y
we find
- | 1| <V ) o4y 2
‘. + 2‘leK * T x
X - "_©
. ' 1-v m/2 )
- -n n-
. =7, YK [ cos 6do
L‘ -"/2
: 1-v, -n
- 2n Ynyx . (A.9)
\ with Ya given by (3.7). Thus the remainder term is bounded by
, IRel = I2Re1 | = 2|1 ]
-1 " G n :1
. s (l-vr)yn("(zx+l)) . (A.].O) i
The same bound applies to the error incurred by cutting off the summation
N :
: in (3.16) at k = -K and k = K, with (l-vr) replaced by (l—v)M, as can easily J
;;: X be shown by replacing hr(z) in (A.7) with h(z) in (3.13).
“ A
® In this way we show that the partial sums in (A.3) converge to the prob-
I abilities 9 defined in (3.2) and summed in (3.1). The convergence of the
1 4
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series in (3.1) follows from Abel's criterion [26]). The series

Q -Z o (A.11)

converges to 1 by virtue of (2.8) with z = 1; £(1) = 1 by (2.7). We need only
to show that for r sufficiently large, the 9% n form a monotonely decreasing
]

sequence in r for fixed n. Now by (2.20), (2.26), and (1.17) with v = Vs

M = 1, the quantities P defined by (2.8) and (2.9) are

Pr,m = (1~ vr) E vrk(kG)'ll e-kG/I;n! (A.12)
k=1

The eigenvalues Ar of (2.2) and hence the v; defined in (2.8) are arranged in
descending order, and v, * 0 as r + », For some integer Tgs Ve < £ for all
r > Tos whereupon

k

>
r+l? r r

k
(l-vt)vr > A-v_. v ¥k 21,

T+l 0

and the probabilities (1--vr)vrk in (A.12) form a monotonely decreasing sequence.

The probabilities Pr o’ therefore, form such a sequence, and so do the prob-
1 4

abilities -

qr,n = Z Pr,m

k=m
Since the series in (A.1l) converges, and for r > o the 9% o form a monotonely
. 14

decreasing sequence, the series in (3.1) converges by Abel's criterion.
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3 Appendix B, Residue Expansion

Dropping the subscript k, we write the terms in (3.15), .with (3.13), as

- Reg w =L &1 [ a-vwe-pM" ]
| G=DT FT | ()2 SG-Op; T,

2=y

MMl [
- 81‘_"1’;, : v [F(z) G(z)] (8.1)
H4

z=L

s with

F(z) z-% " 2" B.2
(z=m..9(2)=z—_—f (B.2)

2 so that

M M1 M-1-r T
1-v) M-1) d d
Res = - (M-I)! z ( R ) —_—ZM-I-r F(z) — G(2z)

\{; r=0 d dz z=r

: - a-oM Z & 1T (3.3)

with

¢ == — F(z) (B.4)
=

:. | T = -L d—r G(z) (BoS)

] : dz 2=

Starting with ¢t, we put into F(z) in (B.Z)‘

6(z-37) =y,

so that

(B.6)

o o DM T [(ey-l)‘“]
r r! dyt y

y=0
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Now we apply the method of Bell polynomials as in (1.11) - (1.15), except that

here

. .
£(z) =20, g(z) =& z‘l (B.7)

The k-~th derivative of f(z) is

k - (M+k)
fk = (-1) (M)kz ’

), = MM+1)...(M+k-1),

z=g(0) =1, (B.8)
and as in (1.12),
M r-M S .
o = (-1)"e™ Z % (B.9)
k=1

with the Ht Kk obeying the recurrent relation [12]
»

" -1 r+l-m H
r+l,k+1 r+1 2: (r-m)! "mk’

w=k
'H Wi H _ =g %/r! (8.10)
r,1 «rt° r,r & : *
in which
k
d 1
g =" % g(z) " ri (B.11)
dz
z=0
Thus we obtain
M_r-M ~ k .
t-
o, = (-1)'c E (-1) (M)kﬂr’k (B.12)
k=1

in which the H r. k are given by the recurrent relation
’ .
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y
;j r+l,k+l  r+1] E : (r-m)!(r+2-m)
i n=k ’
E:- R | — Hr- k
N T+1 TG+ (B.13)
| j‘o
with special values
| -1 -1 .2
a2 %0 "ror Boe a (B.14)
For 1"r in (B.5) we obtain
T
T_- ;1!- L -t
dz
z=y |
£ P r-s .
D ) R e R
5=0 dz dz 2=C
T -
s (z-1)T-5+ ]
' 8=0 i
r -n S n+s-1 -1\ j
- -1)f —& 2 ( (5——) (B.15) ]
s=0 :
It is convenient to .write 3
;]
b = (1 Mler -1l ~(M-r-1). (M)
«br (-1) GG T, s (B.16) q
with
™) E’ k ;
r A 3
_ Tr = (~1) (-1) (M)k Hr’ka
: ' k=1
™ .1, osrsu-y, (8.17)

whereupon, with

]
o
R
4
N

PO I PRI S R R R AL S DL |
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-n r

o= (D F5 G-17" Z (“*2‘1) (%_—1)8 (B.18)

s=0

we find from (B.3)

a-w" 1 r ~r_ (M)
Res = 1= Z ¥, 1
r=0
M Ml | -n
l1-v) M) -j 4
=0
I (n)
= - -j —8 - -1l,s P
E, = (z-1) 2 -2 -t (.20)
8-
where the coefficients
™) ™)
05" =Tyyy 0SISHM-1 (B.21)

are tabulated in Table II. A residue of this form is calculated for each pole

T = ;k’ and the result is the expression (3.16) for the probability Qn+'

AT AT AT TR
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Table 1

R e A e
St ~ .

W W TR YR W —m W~ w = -
e e ST RS R R

Performance of Residue Series for Qn+ (40 terms)

Lorentz spectral demsity, m = 4.4365821

R =35, 6=20

Residue Exact
geries

0.940032 0.939034
0.842027 0.842012
0.710186 - 0.710182
0.567215 0.567513
0.433256  0.433255

Last
increment

©2.20(~3)

2.40(-5)
3.45(-7)
6.71(-9)
1.25(-10)

n

20
40
60
80
100

37

N_ = 20, G=5

P

Residue
series

0.991725
0.928487
0.785282
0.602037
0.428268

Exact

0.991717
0.928483
0.785280
0.602037
0.428268

Last
increment

6.38(-6)

3.60(~10).
2.03(-14)
1.14(-18)
6.43(-23)

Rt Bctn, Nt A,

..7“."‘_.

.......

2 s

A & S . ...

BB ol




Table TI

Coefficients © (M) in (3.16)

h|
1 2 3 4 5 6 7 8 9 10 11
1
3
3 1
1
i 2 1
25 35 3 1
12 12 2
137 15 17
60 73 A 3 1
: 49 203 49 35 7
71 3% %5 8 16 ) 1
363 469 967 28 23
8 1 Yo 90 120 3 3 4 1
g 1 161 20531 80 1069 27 39 9 X
28 = 5040 80 80 2 7 2
o 3 1129 515 4523 285 3013 75 W5
252 1008 378 16 144 3 1
5 q 138 L7133 84095 341693 8591 7513 605 44 11
2530 25200 6048 1512 788 350 24 3 3
83711 190553 103344293 1254429 242537 1901 10831 35
121 33736

35200 6531840 45360 6048 20 20 ¥ T 6 1

38 ;
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40
60
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200

Table III

Performance of Residue Series (3.16) for Qn+

Negative-Binomial Primary Distribution (M = 5)

Single term

NP
0.932417
0.833080
0.705184
0.568492
0.439202
0.198436
0.0763843

0.983799
0.911155
0.775914
0.608256
0.443583
0.157956
0.0440489

Residue series Num

=35, G =20

0.955457
0.873738
0.749536
0.601921
0.439582
0.198413
0.0763844

0.983798
0.911153
0.775912
0.608256
0.443581
0.157956
0.0440489

39

N NN WS

I T = R S S PRI

Exact

0.955457
0.873737
0.749535
0.601920
0.439582
0.198413
0.0763845

0.983799
0.911155
0.775914
0.608258
0.443583
0.157956
0.0440489
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Table IV

QJH Neyman Type-A Distribution

Numerical Contour Integration

n Number of yo Result of Exact
steps . integration

N =35, G =20

P
25 37 1.687 3.5527190(-2)
74 1.687 3.5523618(-2)
148 1.687 3.5523618(-2) 3.5523618(-2)
100 36 0.6551 0.52720529
. 71 0.6460  0.52698250
141 0.6415 0.52698245 0.52698245
175 36 0.5099 1-6.3492573(-2)
71 0.5029 1-6.3492302(-2)
141 0.4993 1-6.3492302(-2) 1-6.3492302(~2)

Np =20, G=5

25 41 2.856 9.3933963(-5)

82 2.856 9.3933799(-5)
164 2.856 9.3933799(-5) 9.3933799(~-5)
100 30 0.9178 0.51061370
60 0.9178 0.51045010
120 0.9178 0.51045007 0.51045007
175 25 0.7618 1-2.9833051(~-3)
" 50 0.7618 1-2.9833045(-3)

i ) 99 0.7542 1-2,9833045(-3) 1-2.9833046(-3)




...........

Table V

q:E Distribution Generated by Negative-Binomial, M = 5

Numerical Contour Integration

n Number of Yo Result of Exact
steps integration
Np = 5, G =20
25 30 1.3191 1-9.7678911(-2)
60 1.3191 1-9.7652467(-2)
119 1.3081 1-9.7652467(-2) 1-9.7652465(-2)
100 71 0.5602 .0.43963053
143 0.5563 0.43958206
285 0.5543 - 0.43958206 0.43958206
175 57 0.4193 0.12519049
. 115 0.4157 0.12518192
229 0.4157 0.12518192 0.12518192
Np = 20, G=5
25 22 1.3094 1-2.7957485(-2)
43 1.2796 1-2.7954584(-2)
84 1.2647 1-2.7954585(~-2) 1-2.7954583(-2)
100 55 0.5571 0.44363275
112 0.5571 0.44358254
223 0.5571 0.44358254 0.44358255
175 47 0.4211 8.5479092(-2)
94 0.4211 8.5472726(-2)
187 0.4188 : 8.5472726(-2) 8.5472739(-2)

41
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25
50
100
150

' 200

250
500
750
1000
1500

2000 1-1.58622(-2)

UAE

3.14560(-2)
0.130576
0.527499
0.857731

1-2,50472(~-2)

1.98051(-5) .

1.81082(-3)
2.98581(-2)
0.168343
0.752654

Table VI

Saddlepoint Approximations

Q; ¢t Neyman Type-A
N =35, G = 20
p .
Off-axis Total
contribution

4.09137(-3) 3.55474(-2)

9.51063(~6) 0.130585
'«5,51718(-4) 0.526947
3.01480(-5) 0.857762

9.23185(-7) 1-2.50463(-2)

N =18
p

G =72

-1.71780(-6) 1.80873(-5)

1.81503(-5)
5.45979(~5)
-2.72697(-4)
-8.41239(-5)

1.82897(-3)
2.99127(-2)
0.168070
0.752570

72.85533(-7) 1-1.58625(~2)

42

Exact

3.55236(-2)
0.130600
0.526982
0.857777

1-2,50431(-2)

1.80638(-5)
1.82849(-3)
2,99100(-2)
0.168064
0.752567

AP

Crude S-P

3.289(~2)
0.1324
0.5103
0.8626
1-2.478(-2)

2.022(-5)
1.826(-3)
2.986(-2)
0.1657
0.7648

1-1.58627(-2) 1-1.571(-2)




Table VII
b : Saddlepoint approximations
ﬁ QQH Distribution Arising from Negative-Binomial, M = 5

N =35, G =20
P

n UAE Off-axis Total Exact Crude S-P
contribution

25 8.87698(-1)  8.93627(-3) 9.77061(-2) 9.75652(~2) 9.260(-2)

h 50 0.228548 1,32791(~3) 0.229876 0.229878 0.2324
; 100 0.560734 -3.80191(~4) 0.560354 0.560418 0.6189
150 0.801492 2,28596(~5) 0.801515 0.801587 0.8156

200 1-7.64312(-2) -1.88311(-7) 1—7.64314(-2) 1-7.63845(~-2) 1-7.375(-2)

N =18, G= 72
P

250 1.50326(-2) 1,09488(-5) -1,50435(-2) 1.50203(-2) 1.539(-2)

‘3 500 8.17995(~2) ~4.29986(~4) 8.13695(-2) 8.13251(-2) 8.292(-2)

N 750 0.208630 4.65397(-4) 0.209096 0.209060 0.2101
1000 0.369655 ~2.76864(-4) 0.369378 0.369373 0.3692

- 1500 0.672094 -3.98353(-5) 0.672054 0.672103 0.7066

: 2000 0.860206 -2,67366(-6) 0.860204 0.860256 0.8678
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FIGURE CAPTIONS

Fig. 1. Probability distributions {pn} of secondary electrons when the primary

electrons have negative-binomial distributions (solid lines) or arise from in-

i% ’ cident light with a Lorentz spectral density (dashed lines); Np =2, G = 6.
i% The curves are indexed by the number M of degrees of freedom. The curve marked
! ‘o' represents the Neyman Type-A distribution.

Fig. 2. Probability distributions {pn} of secondary electrons when the primary

electrons have negative-binomial distributions (solid lines) or arise from in-

cident light with a Lorentz spectral density (dashed lines); Np =6, G= 2,

The curves are indexed by the number M of degrees of freedom. The curve marked

‘o! represents the Neyman Type~A distribution.

Fig. 3. Paths of steepest descent of the integrands in (1.7) and (1.8) when the
cumulative Neyman Type~A distribution is being calculated for Np = G = 10. The
. left-hand curve is for n = 75, the right-hand for n = 150. The small circles

indicate the saddlepoints of the integrand.

Fig. 4. Cumulative distributions of the number of secondary electrons when the
primary electrons have a negative-binomial distribution; Np = 5, G = 20. The
curves are indexed by the number M of degrees of freedom, the curve marked '«'
representiné the Neyman Type-A distribution. The small circles denote values
of the cumulative distribution when the incident light has a Lorentz spectral

density with the same number of degrees of freedom,

Fig. 5. Cumulative distributions of the number of secondary electrons when the
pri;;ry electrons have a negative-binomial distribution; Np = 20, G = 5. The
curves are indexed by the number M of degrees of freedom, the curve marked '='

representing the Neyman Type~A distribution. The small circles denote values




- T T wreW W YR TT - - ¥ T I T
AN N e s e e Ta e MU BTN . e . Aot M
— ~— e ot i e s el A i"'.‘\."""',- ARSI RO AR Ot S I RPN s e B
A I R S Bt it B el A TR AT RTINS ‘- RO A

by |

3 JRENE

L3¢ )

of the cumulative distribution when the incident light has a Lorentz spectral

\“-ﬂ:n"‘\
P I

Qi
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Fig. 6. Cumulative distributions of the number of secondary electrons when the |
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P
é: primary electrons have a negative-binomial distribution; Np = 18, G = 72. The
%ﬁ curves are indexed by the number M of degrees of freedom, the curve marked '«='
).\

representing the Neyman Type~A distribution. The small circles denote values
of the cumulative distribution when the incident light has a Lorentz spectral

density with the same number of degrees of freedom.

Fig. 7. Cumulative distributions of the number of secondary electrons when the
primary electrons have a negative-binomial distribution; Np = 72, G = 18. The
curves are indexed by the number M of degrees of freedom, the curve marked '«'
representing the Neyman Type-A distribution., The small circles denote values
of the cumulative distribution when the incident light has a Lorentz spectral

density with the same number of degrees of freedom.
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